References

- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389–393.
- Domenicano, A. (1992). Accurate Molecular Structures, edited by A. Domenicano & I. Hargittai, p. 437. New York: Oxford University Press.
- Enraf-Nonius (1988). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Hertel, E. & Schneider, K. (1931). Z. Phys. Chem. Abt. B, 12, 139-150.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, Appendix A. Weinheim: VCH.
- Pierce-Butler, M. A. (1982). Acta Cryst. B38, 3097-3100.
- Verbiest, T., Clays, K., Samyn, C., Wolff, J. J., Reinhoudt, D. & Persoons, A. (1994). J. Am. Chem. Soc. 116, 9320-9323.
- Wolff, J. J. & Limbach, H.-H. (1991). Liebigs Ann. Chem. pp. 691-693.

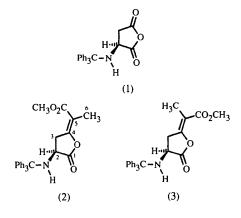
Acta Cryst. (1996). C52, 3227-3229

(S),(E)-5-Methoxycarbonyl-2-triphenylmethylaminohex-4-en-4-olide[†]

VASSILIOS NASTOPOULOS,^a CONSTANTINOS

Athanassopoulos,^a Dionissios Papaioannou^a and Enrico Gavuzzo^b

^aDepartment of Chemistry, University of Patras, Gr 265 00 Patras, Greece, and ^bIstituto di Strutturistica Chimica, CNR, CP no. 10, 00016 Monterotondo Stazione, Roma, Italy. E-mail: nastopoulos@upatras.gr


(Received 19 June 1996; accepted 10 September 1996)

Abstract

The title compound, $C_{27}H_{25}NO_4$, is the major product of the Wittig reaction of (*S*)-*N*-triphenylmethylaspartic anhydride with the stabilized ylide Ph₃P=C(Me)CO₂Me. The crystal structure determination unambiguously confirms the *E* configuration of the C4=C5 double bond and shows that the molecule, with the exception of the triphenylmethylamino moiety, adopts an overall planar conformation.

Comment

We have recently shown that the readily available (S)-N-triphenylmethylaspartic anhydride, (1), can be applied in the asymmetric synthesis of amino acid and peptide derivatives through its reactions with a variety of nucleophiles (Athanassopoulos, Tzavara, Papaioan-

nou, Sindona & Maia, 1995). In particular, Wittig reaction of the anhydride (1) with the stabilized ylide Ph_3P —C(Me)CO₂Me produces a mixture of the isomeric enollactones (2) and (3) in the ratio 6:1.7. The assignment of the configuration of their C—C double bond was based solely on the magnitude of the homoallylic couplings between the H(C3) and H(C6) protons. In this paper, we describe the crystal structure of the title enollactone, (2), which shows unambiguously that the C4—C5 double bond of the major product of the above-mentioned Wittig reaction has the *E* configura-

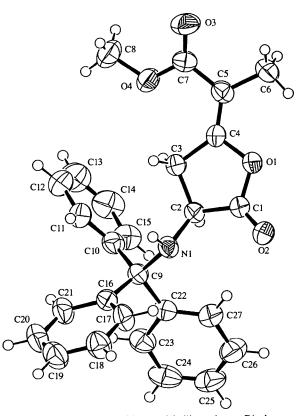


Fig. 1. Molecular structure with atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary size.

Acta Crystallographica Section C ISSN 0108-2701 © 1996

[†] Alternative nomenclature: methyl 2-[2-0x0-3-(triphenylmethylamino)tetrahydrofuran-5-ylidene]propanoate.

tion, in agreement with previously reported proton NMR data.

The distances and angles of the core enollactone moiety are comparable to those reported for a similar molecule (Begley, Gedge, Knight & Pattenden, 1979). With the exception of the triphenylmethylamino moiety, the molecule shows overall planarity as expected for such a conjugated system. The triphenylmethyl moiety adopts the propeller-like conformation which is the established way of reducing steric interaction between the phenyl rings in this group (Destro, Pilati & Simonetta, 1980). There are no hydrogen bonds. Fig. 1 depicts the correct absolute configuration of the molecule which was assigned to agree with the known chirality of (S)-Ntriphenylmethylaspartic anhydride from which (2) was synthesized. As collected, the X-ray data did not allow the determination of the absolute configuration.

Experimental

The Wittig reagent Ph₃P=C(Me)CO₂Me (1.11g, 3.2 mmol) was added to a solution of anhydride (1) (1.00g, 2.8 mmol) in dichloromethane (10 ml) and the resulting solution was kept at ambient temperature for 20 h. The solvent was removed under reduced pressure and the resulting oily residue was taken up in ethyl acetate and washed sequentially with 5% aqueous NaHCO3 and water. The organic phase was dried (Na_2SO_4) and the solvent removed to leave a residue which was subjected to flash column chromatography, using the solvent system petroleum ether 40-60°/ethyl acetate (8.5:1.5)as the eluant. The fractions with R_{f} 0.49 for the same solvent system were pooled and gave crystalline enollactone (2) (0.72 g, 60%) on evaporation of the solvents. Crystals suitable for X-ray analysis were obtained by recrystallization from diethyl ether/hexane.

Crystal data

		0.0750 (.)
$C_{27}H_{25}NO_4$ $M_r = 427.48$ Orthorhombic $P2_{12}1_{21}$ a = 10.806 (1) Å b = 21.947 (4) Å c = 9.614 (4) Å	Cu $K\alpha$ radiation $\lambda = 1.5418$ Å Cell parameters from 25 reflections $\theta = 15.4-24.4^{\circ}$ $\mu = 0.672 \text{ mm}^{-1}$ T = 203 (2) K	C20 0.9055 (3) C21 0.8154 (2) C22 0.5772 (3) C23 0.6781 (3) C24 0.6732 (4) C25 0.5681 (4) C26 0.4679 (4) C27 0.4724 (3)
$V = 2280.0 (11) \text{ Å}^3$ Z = 4	T = 293 (2) K Prism $0.32 \times 0.27 \times 0.16 \text{ mm}$	Table 2. Se
$D_x = 1.245 \text{ Mg m}^{-3}$ $D_m \text{ not measured}$	Colourless	C102 C101 C1C2 C2N1
Data collection Rigaku AFC-5R diffractom- eter	$\theta_{\rm max} = 62.08^{\circ}$ $h = 0 \rightarrow 12$	$\begin{array}{c} C2-C3 \\ C3-C4 \\ 01-C1-C2 \\ 01-C2 \\ 0$
ω -2 θ scans Absorption correction: none 2069 measured reflections	$k = 0 \rightarrow 25$ $l = 0 \rightarrow 11$ 3 standard reflections	C1C2C3 C4C3C2 C5C401 C5C4C3 O1C4C3
2009 independent reflections 2069 independent reflections 1925 observed reflections $[I > 2\sigma(I)]$	monitored every 147 reflections intensity decay: 8.3%	02C1C2N1 N1C2C3C4 C1C2C3C4 C5C401C1

Refinement

Refinement on F^2	Extinction correction:
$R[F^2 > 2\sigma(F^2)] = 0.0347$	SHELXL93 (Sheldrick,
$wR(F^2) = 0.0977$	1993)
S = 1.045	Extinction coefficient:
2069 reflections	0.0080 (5)
298 parameters	Atomic scattering factors
$w = 1/[\sigma^2(F_o^2) + (0.0488P)^2$	from International Tables
+ 0.3013P]	for Crystallography (1992)
where $P = (F_o^2 + 2F_c^2)/3$	Vol. C, Tables 4.2.6.8 and
$(\Delta/\sigma)_{\rm max} = -0.001$	6.1.1.4)
$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$	Absolute configuration:
$\Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3}$	Flack (1983)
	Flack parameter = 0.5 (4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

 $U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

			,				
C1 C2 C3 C4 O1 O2 C5 C6 C7 O3 O4 C8 N1 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19	x 0.2494 (2) 0.3717 (2) 0.3549 (2) 0.2178 (2) 0.1619 (2) 0.2211 (2) 0.1453 (2) 0.0066 (3) 0.1978 (3) 0.1978 (3) 0.1978 (3) 0.4315 (2) 0.3155 (2) 0.3779 (3) 0.4749 (2) 0.5906 (2) 0.6184 (2) 0.6601 (3) 0.6795 (4) 0.5985 (3) 0.5924 (2) 0.6643 (2) 0.5739 (3) 0.7539 (3) 0.8756 (3)	y 0.87783 0.86548 0.89287 0.90238 0.88950 0.87788 0.92178 0.92511 0.94558 0.97763 0.92932 0.94976 0.88568 0.84913 0.83265 0.8775 0.88661 0.8099 0.7652 0.0.77609 0.88774 0.92185 0.92537 0.94934	$\begin{array}{c} (11)\\ (12)\\ (11)\\ (9)\\ (11)\\ (11)\\ (2)\\ (12)\\ (12)\\ (10)\\ (9)\\ 2)\\ (10)\\ (11)\\ (11)\\ (11)\\ (2)\\ 2)\\ 2)\\ (14)\\ (11)\\ (12)\\ (15)\\ (15)\\ (15)\\ \end{array}$	z 0.8303 (3) 0.8999 (3) 1.0453 (3) 1.0589 (3) 0.9314 (2) 0.7111 (2) 1.1612 (3) 1.1488 (3) 1.2907 (3) 1.3707 (2) 1.3707 (2) 1.3707 (2) 1.3707 (2) 1.4328 (3) 0.8152 (2) 0.812 (3) 0.8212 (3) 0.8212 (3) 0.8212 (3) 0.8212 (3) 0.9738 (3) 1.2056 (3) 1.2595 (4) 1.1710 (4) 1.0296 (3) 0.6352 (3) 0.6352 (3) 0.6317 (3)	0.0424 (6) 0.0428 (6) 0.0456 (6) 0.0428 (6) 0.0511 (5) 0.0660 (6) 0.0469 (6) 0.0469 (6) 0.0488 (6) 0.0757 (7) 0.0585 (5) 0.0756 (10) 0.0428 (5) 0.0429 (6) 0.0428 (6) 0.0429 (6) 0.0596 (7) 0.0786 (11) 0.0889 (12) 0.0806 (11) 0.0629 (8) 0.0442 (6) 0.0543 (7)		
C20 C21	0.9055 (3) 0.8154 (2)	0.91604 0.88548	(15) (14)	0.7189 (4) 0.7929 (3)	0.0680 (9) 0.0573 (7)		
C22 C23 C24 C25 C26 C27	0.5772 (3) 0.6781 (3) 0.6732 (4) 0.5681 (4) 0.4679 (4) 0.4724 (3)	0.79220 0.75346 0.70419 0.69187 0.7296 (0.78001	(12) (13) (15) 2)	0.7280 (3) 0.7138 (3) 0.6229 (4) 0.5502 (3) 0.5638 (3) 0.6511 (3)	0.0464 (6) 0.0581 (7) 0.0706 (10) 0.0705 (9) 0.0718 (9) 0.0554 (7)		
Table 2. Selected geometric parameters (Å, °)							
C1O2 C1O1 C1C2 C2N1 C2C3 C3C4		1.186 (3) 1.380 (3) 1.506 (4) 1.450 (3) 1.532 (4) 1.502 (3)	C4—C5 C4—O1 C5—C7 C5—C6 C7—O3		1.328 (4) 1.395 (3) 1.465 (4) 1.506 (4) 1.198 (3)		
01C1C C1C2C C4C3C C5C4O C5C4C O1C4C	3 2 1 3	108.7 (2) 103.4 (2) 104.5 (2) 117.4 (2) 133.8 (2) 108.8 (2)	C1O1- C4C5- C4C5- C7C5- C2N1-	C7 C6 C6	111.1 (2) 121.0 (2) 123.0 (3) 115.8 (2) 117.4 (2)		
02C1C N1C2C C1C2C C5C4O	3C4 3C4	33.1 (4) 139.4 (2) 15.0 (3) 171.9 (2)	C3C4-	C5C6 C5C6 C7O3	5.4 (4) -177.8 (3) 159.9 (3)		

H atoms were placed geometrically and thereafter allowed to ride on their parent atoms with common isotropic displacement parameters ($U_{iso} = 0.08 \text{ Å}^2$). For the H atoms of the C6 methyl group, the torsion angle was also refined ($U_{iso} = 0.13 \text{ Å}^2$). The H atom on N1 was located from a difference map and refined isotropically. Programs used include *PARST* (Nardelli, 1983).

Data collection: TEXSAN (Molecular Structure Corporation, 1985). Cell refinement: TEXSAN. Data reduction: TEXSAN. Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: PLATON (Spek, 1990). Software used to prepare material for publication: SHELXL93.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BM1098). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A. Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–436.
- Athanassopoulos, C., Tzavara, C., Papaioannou, D., Sindona, G. & Maia, H. L. S. (1995). *Tetrahedron*, 51, 2679–2688.
- Begley, M. J., Gedge, D. R., Knight, D. W. & Pattenden, G. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 77-83.
- Destro, R., Pilati, T. & Simonetta, M. (1980). Acta Cryst. B36, 2495-2497.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Nardelli, M. (1983). Comput. Chem. 7, 95-98.

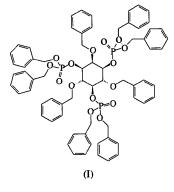
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.

Acta Cryst. (1996). C52, 3229-3232

2,4,6-Tri-*O*-benzyl-*myo*-inositol 1,3,5-Tris-(dibenzylphosphate)

VALERIE GRAINGEOT, CEDRIC BRIGANDO, BRUNO FAURE AND DAVID BENLIAN

Laboratoire de Chimie de Coordination, Faculté des Sciences et Techniques de Saint-Jérôme, Case D22, 13397 Marseille CEDEX 20, France. E-mail: david.benlian@lcc. u-3mrs.fr


(Received 6 February 1996; accepted 29 July 1996)

Abstract

This paper reports the crystal structure of 2,4,6tri-O-benzyl-myo-inositol 1,3,5-tris(dibenzylphosphate), $C_{69}H_{69}O_{15}P_3$. The X-ray analysis reveals a cyclohexyl ring in a chair conformation with five substituents in equatorial orientations and one in an axial orientation.

Comment

The title compound, (I), was investigated as part of a study on the regioselective phosphorylation of *myo*inositol and of intramolecular interactions in this series of compounds related to biological intracellular carriers. Structural data are very scarce on these analogues (*i.e.* on *myo*-inositol hexaphosphate or tri- and tetraphosphates) (Blank, Pletcher & Sax, 1985). These interactions induce conformation and inter-site hydrogen-bond changes which are pH dependent. We reported recently

on NMR investigations of conformational variations with pH (Brigando, Mossoyan, Favier & Benlian, 1995) and on the influence of intramolecular labile hydrogen bonds (Brigando & Mossoyan, 1996). It appears that certain chemical shifts occur when the pH is raised, by the H1-H6 protons of the myo-inositol ring C atoms, which could be assigned to the direct through-space interaction with the vicinal phosphate-O atom. This is observed in aqueous and mixedsolvent solution. It appears that, even in the case of esters, the phosphorylation on the 1, 3 and 5 positions has a noticeable but non-uniform influence on the vicinal C2, C4 and C6 centres. This is sustained by comparison with the structure of the non-phosphorylated molecule (Graingeot, Brigando & Benlian, 1996). The phosphorylation is the crucial step of the synthesis of *myo*-inositol trisphosphates. The structure of (I) was determined by X-ray diffraction. An ORTEPII (Johnson, 1976) view is shown in Fig. 1.

The molecule assumes a chair conformation with three dibenzyl phosphate groups at the C1, C3 and C5 positions. The three other substituents on the central ring are benzyloxy groups (at the C2, C4 and C6 positions). The only substituent in an axial position is the benzyloxy group on C2, the others are in equatorial positions. The stereochemistry of the central ring is shown in Fig. 2.

The adoption of these orientations by the substituents appears to have been determined by the requirement of minimum steric interactions. Two remarkable features of this structure are worth a closer look. One is the relative mobility of the outer rims of the benzyl groups in the structure as shown by the U_{eq} values (>0.12)